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Remarks

“The frontier of simulation-based inference” by Cranmer et al.
(2020)

Traditional simulation-based inference techniques face the
following challenges:

(1) Sample efficiency, (2) Quality of inference, and
(3) scalability to large number of observations and new
observations.

Fast development in simulation-based inference recently for
three reasons...
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Well reflected in the discussed paper...

(1) “The ML revolution allows us to work with
higher-dimensional data, which can improve the quality of
inference. Inference methods based on neural network
surrogates are directly benefiting from the impressive rate of
progress in deep learning.”

(2) “Active learning methods can systematically improve
sample efficiency, letting us tackle more computationally
expensive simulators.”

(3) “They still treat the simulator as a generative black box
that takes parameters as input and provides data as output,
with a clear separation between the simulator and the
inference engine. A third direction of research is changing this
perspective, by opening the black box and integrating
inference and simulation more tightly.”
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Problem setting

Notation: Parameter θ, observed data X
(n)
0

Problem: How to sample from the posterior

π(θ | X(n)
0 ) ∝ p

(n)
θ (X

(n)
0 )π(θ),

when the likelihood p
(n)
θ (X

(n)
0 ) and prior π(θ) are analytically

intractable but easy to draw from?
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Combine strengths: ABC and GAN

ABC: generate fake data and match with the real data to
generate posterior samples.

(1) Generate reference tables (θj , X
(n)
j ), keep θj ’s if their

associated summary statistics are close to those of the
observed data.

(2) ABC regression adjustment, improve the match by fitting
a weighted regression of θj ’s on summary statistics.

GAN: directly sample from complex/intractable likelihoods.
Generator and Discriminator.

Remark: at first, I thought it was to incorporate GAN within
the ABC framework; but then I realize it’s to use ABC within
GAN.
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Vanilla GAN to Bayesian GAN

Vanilla GAN: Given observed data X
(n)
0 ∼ P

(n)
θ0

, start with
noise Z and find a deterministic map gβ : Z → X and

X ∼ P
(n)
θ such that dW (P

(n)
θ , P

(n)
θ0

) is minimized.

Conditional GAN: the key quantity is no longer X, but θ | X.

Note πg(X, θ) = πg(θ | X)π(X). Fixing the marginal of X,
matching joint distribution is the same with matching the
conditional distribution.

In plain words, we need a generator for (X, θ) and a
discriminator that decides if a generated (X, θ) is actual data
or fake data.
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Bayesian GAN

Wasserstein distance minimization between πg(X, θ) and
π(X, θ):

(g∗, f∗) = argming∈Gargminf∈F |Ef(X, g(Z,X))− Ef(X, θ)|.

(1) Estimate critic f and generator g using neural networks

(2) Use ABC reference tables for empirical approximation of
the expectation term.

Compare between ABC reference table {θj , X(n)
j ) and

{g(Zj , Xj), Xj} where Zj ’s sampled from πZ .

Same Xj , marginal of X is kept the same.
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First refinement for B-GAN

B-GAN 2step: similarly with query-efficient ABC, generate
clever proposals that lead to more efficient/accurate reference
tables compared to X0, then adjust the posterior by
importance sampling. Efficiency improvement.

(1) Generate reference tables using auxiliary proposal π̃

(2) Reweight the samples by using r(θ) = π(θ)/π̃(θ), hence
the posterior π̃(θ|X0)r(θ) is still proportional to the true
posterior.

(3) The density ratio r can be calculated analytically or
approximated using neural networks, or using the probabilities
from a classification.
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Second refinement for B-GAN

B-GAN-VB: maximize the evidence lower bound

L(β) = −KL(qβ(θ | X0)||π(θ | X0)) + CD

in terms of β.

Both the likelihood and posterior are implicit, so they adopt
contrast learning for maximizing the evidence lower bound.

Two contrasting data θ ∼ π(θ | X0) and θ̃ ∼ qβ(θ | X0)

Same fixing-the-marginal and oracle classifier trick applies
here:

d∗gβ (X, θ)

d∗gβ (X, θ)
=

π(X, θ)

qβ(θ | X)π(X)

oracle classifier dgβ to distinguish between π(X, θ) and
qβ(θ | X)π(X).

Replace aspects of the evidence lower bound with adversarial
objectives.
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Where is X0 being used?

For B-GAN, only in the simulation stage (θ̃j ’s), not in network
training.

For B-GAN 2step, in the simulation stage (θ̃j ’s) and proposal
calculation, not in network training.

For B-GAN-VB, in all stages, including network training.
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Theory

Upper bound for the total variational distance between true
and approximated posterior measures.

The error is decomposed into three terms:
(1) the ability of the critic to tell the true model apart from
the approximating model;
(2) the ability of the generator to approximate the average
true posterior;
(3) the complexity of the (generating and) critic function
classes.

13 / 20



Why does B-GAN 2Step work better than B-GAN?

Question - can we obtain something similar by comparing the error
bound between B-GAN and B-GAN-VB?
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Compared to B-GAN, the improvement is significant for both
B-GAN 2step and B-GAN-VB, in terms of every aspect.
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A few questions

Compare these two refinements, Which one to use in what
scenarios? Is it correct to say B-GAN-VB tends to
underestimate uncertainty/CI, but is more accurate for
complex models? Some discussions on the scalability would
also be helpful.

Extension to model comparison/model evidence? Streaming
data modeling?
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Other questions

Jensen-Shannon divergence and Wasserstein distance. The
authors give a nice example of convergence/computational
issue for JS divergence. But I wonder what price is paid for
using Wasserstein distance, besides computational cost?

Remark 2 assumes ϵn could be n−1/2, then the prior
concentration condition

Π(Bn(θ0; ϵn)) ≥ e−C2nϵ2n

needs to be adjusted accordingly.
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