Discussion of "Adversarial Bayesian Simulation" by Yuexi Wang and Veronika Ročková

Weining Shen

Department of Statistics, UC Irvine
O'Bayes: September 9, 2022

TERYNGEPAPER

Remarks

- "The frontier of simulation-based inference" by Cranmer et al. (2020)
- Traditional simulation-based inference techniques face the following challenges:
- (1) Sample efficiency, (2) Quality of inference, and (3) scalability to large number of observations and new observations.
- Fast development in simulation-based inference recently for three reasons...

Well reflected in the discussed paper...

- (1) "The ML revolution allows us to work with higher-dimensional data, which can improve the quality of inference. Inference methods based on neural network surrogates are directly benefiting from the impressive rate of progress in deep learning."
- (2) "Active learning methods can systematically improve sample efficiency, letting us tackle more computationally expensive simulators."
- (3) "They still treat the simulator as a generative black box that takes parameters as input and provides data as output, with a clear separation between the simulator and the inference engine. A third direction of research is changing this perspective, by opening the black box and integrating inference and simulation more tightly."

Problem setting

- Notation: Parameter θ, observed data $X_{0}^{(n)}$
- Problem: How to sample from the posterior $\pi\left(\theta \mid X_{0}^{(n)}\right) \propto p_{\theta}^{(n)}\left(X_{0}^{(n)}\right) \pi(\theta)$,
- when the likelihood $p_{\theta}^{(n)}\left(X_{0}^{(n)}\right)$ and prior $\pi(\theta)$ are analytically intractable but easy to draw from?

Combine strengths: ABC and GAN

- ABC : generate fake data and match with the real data to generate posterior samples.
- (1) Generate reference tables $\left(\theta_{j}, X_{j}^{(n)}\right)$, keep θ_{j} 's if their associated summary statistics are close to those of the observed data.
- (2) $A B C$ regression adjustment, improve the match by fitting a weighted regression of θ_{j} 's on summary statistics.
- GAN: directly sample from complex/intractable likelihoods. Generator and Discriminator.
- Remark: at first, I thought it was to incorporate GAN within the $A B C$ framework; but then I realize it's to use $A B C$ within GAN

Combine strengths: $A B C$ and GAN

- ABC : generate fake data and match with the real data to generate posterior samples.
- (1) Generate reference tables $\left(\theta_{j}, X_{j}^{(n)}\right)$, keep θ_{j} 's if their associated summary statistics are close to those of the observed data.
- (2) $A B C$ regression adjustment, improve the match by fitting a weighted regression of θ_{j} 's on summary statistics.
- GAN: directly sample from complex/intractable likelihoods. Generator and Discriminator.
- Remark: at first, I thought it was to incorporate GAN within the $A B C$ framework; but then I realize it's to use $A B C$ within GAN.

Vanilla GAN to Bayesian GAN

- Vanilla GAN: Given observed data $X_{0}^{(n)} \sim P_{\theta_{0}}^{(n)}$, start with noise Z and find a deterministic map $g_{\beta}: Z \rightarrow X$ and $X \sim P_{\theta}^{(n)}$ such that $d_{W}\left(P_{\theta}^{(n)}, P_{\theta_{0}}^{(n)}\right)$ is minimized.
- Conditional GAN: the key quantity is no longer X, but $\theta \mid X$.
- Note $\pi_{g}(X, \theta)=\pi_{g}(\theta \mid X) \pi(X)$. Fixing the marginal of X, matching joint distribution is the same with matching the conditional distribution.
- In plain words, we need a generator for (X, θ) and a discriminator that decides if a generated (X, θ) is actual data or fake data.

Bayesian GAN

- Wasserstein distance minimization between $\pi_{g}(X, \theta)$ and $\pi(X, \theta)$:

$$
\left(g^{*}, f^{*}\right)=\operatorname{argmin}_{g \in \mathcal{G}} \operatorname{argmin}_{f \in \mathcal{F}}|E f(X, g(Z, X))-E f(X, \theta)| .
$$

- (1) Estimate critic f and generator g using neural networks
- (2) Use ABC reference tables for empirical approximation of the expectation term.
- Compare between ABC reference table $\left\{\theta_{j}, X_{j}^{(n)}\right.$) and $\left\{g\left(Z_{j}, X_{j}\right), X_{j}\right\}$ where Z_{j} 's sampled from π_{Z}.
- Same X_{j}, marginal of X is kept the same.

Algorithm 1 B-GAN for Bayesian Simulation (Wasserstein Version).

Input

Prior $\pi(\theta)$, observed data X_{0} and noise distribution $\pi_{Z}(\cdot)$

Training

Initialize network parameters $\omega^{(0)}=0$ and $\boldsymbol{\beta}^{(0)}=0$

Reference Table

For $j=1, \ldots, T: \quad$ Generate $\left(X_{j}, \theta_{j}\right)$ where $\theta_{j} \sim \pi(\theta)$ and $X_{j} \sim P_{\theta_{j}}^{(n)}$.

Wasserstein GAN

For $t=1, \ldots, N$:
Critic Update ($N_{\text {critic }}$ steps): For $k=1, \ldots, N_{\text {critic }}$
Generate $Z_{j} \sim \pi_{Z}(z)$ for $j=1, \ldots, T$.
Generate $\epsilon_{j} \stackrel{\text { iid }}{\sim} U[0,1]$ and set $\bar{\theta}_{j}=\epsilon_{j} \theta_{j}+\left(1-\epsilon_{j}\right) g_{\boldsymbol{\beta}^{(t-1)}}\left(Z_{j}, X_{j}\right)$ for $j=1, \ldots, T$.
Update $\boldsymbol{\omega}^{(t)}$ by applying stochastic gradient descent on (2.5) with the penalty (2.6).
Generator Update (single step)
Generate noise $Z_{j} \sim \pi_{Z}(z)$ for $j=1, \ldots, N$.
Update $\boldsymbol{\beta}^{(t)}$ by applying stochastic gradient descent on (2.5).

Posterior Simulation:

For $i=1, \ldots, M: \quad$ Simulate $Z_{i} \sim \pi_{Z}(z)$ and set $\tilde{\theta}_{i}=g_{\beta^{(N)}}\left(Z_{i}, X_{0}\right)$.

First refinement for B-GAN

- B-GAN 2step: similarly with query-efficient $A B C$, generate clever proposals that lead to more efficient/accurate reference tables compared to X_{0}, then adjust the posterior by importance sampling. Efficiency improvement.
- (1) Generate reference tables using auxiliary proposal $\tilde{\pi}$
- (2) Reweight the samples by using $r(\theta)=\pi(\theta) / \tilde{\pi}(\theta)$, hence the posterior $\tilde{\pi}\left(\theta \mid X_{0}\right) r(\theta)$ is still proportional to the true posterior.
- (3) The density ratio r can be calculated analytically or approximated using neural networks, or using the probabilities from a classification.

Second refinement for B-GAN

- B-GAN-VB: maximize the evidence lower bound

$$
\mathcal{L}(\beta)=-\mathrm{KL}\left(q_{\beta}\left(\theta \mid X_{0}\right) \| \pi\left(\theta \mid X_{0}\right)\right)+C D
$$

in terms of β.

- Both the likelihood and posterior are implicit, so they adopt contrast learning for maximizing the evidence lower bound.
- Two contrasting data $\theta \sim \pi\left(\theta \mid X_{0}\right)$ and $\tilde{\theta} \sim q_{\beta}\left(\theta \mid X_{0}\right)$
- Same fixing-the-marginal and oracle classifier trick applies here:

$$
\frac{d_{g_{\beta}}^{*}(X, \theta)}{d_{g_{\beta}}^{*}(X, \theta)}=\frac{\pi(X, \theta)}{q_{\beta}(\theta \mid X) \pi(X)}
$$

oracle classifier $d_{g_{\beta}}$ to distinguish between $\pi(X, \theta)$ and $q_{\beta}(\theta \mid X) \pi(X)$.

- Replace aspects of the evidence lower bound with adversarial objectives.

Where is X_{0} being used?

- For B-GAN, only in the simulation stage ($\tilde{\theta}_{j}$'s), not in network training.
- For B-GAN 2step, in the simulation stage ($\tilde{\theta}_{j}$'s) and proposal calculation, not in network training.
- For B-GAN-VB, in all stages, including network training.

Theory

- Upper bound for the total variational distance between true and approximated posterior measures.
- The error is decomposed into three terms:
(1) the ability of the critic to tell the true model apart from the approximating model;
(2) the ability of the generator to approximate the average true posterior;
(3) the complexity of the (generating and) critic function classes.

Why does B-GAN 2Step work better than B-GAN?

Remark 3. (2step Motivation) For the proposal distribution $\tilde{\pi}(\theta)$, using similar arguments as in the proof of Theorem 1, the TV distance of the posterior at X_{0} (not averaged over $P_{\theta_{0}}^{(n)}$) can be upper-bounded by

$$
4 d_{T V}^{2}\left(\nu\left(X_{0}\right), \mu_{\widehat{\boldsymbol{\beta}}}\left(X_{0}\right)\right) \leq 2 \mathcal{A}_{1}\left(\mathcal{F}, X_{0}\right)+\frac{B}{\sqrt{2}} \mathcal{A}_{2}(\mathcal{G})+4 \widetilde{C} B \sqrt{\frac{\log T \times \operatorname{Pmax}}{T}}+A_{3}(\widetilde{\pi})
$$

where $\left.\mathcal{A}_{1}\left(\mathcal{F}, X_{0}\right) \equiv \inf _{\omega} \| \log \frac{\pi\left(\theta \mid X_{0}\right)}{\pi_{\hat{\beta}}\left(\theta \mid X_{0}\right)}-\frac{f_{\omega}\left(\theta, X_{0}\right)}{r(\theta)}\right]$ is the discriminability evaluated at X_{0} (as opposed to (4.4)) and where

$$
A_{3}(\widetilde{\pi})=2 \int_{\mathcal{X}} \tilde{\pi}(X)\left[\left\|f_{\omega}\left(X_{0}, \theta\right)-f_{\omega}(X, \theta)\right\|_{\infty}+B\left\|g_{\widehat{\beta}}(\theta)(X)-g_{\widehat{\beta}}(\theta)\left(X_{0}\right)\right\|_{1}\right] \mathrm{d} X
$$

and $g_{\widehat{\beta}}(\theta)(X) \equiv \pi(\theta \mid X)-\pi_{\widehat{\beta}}(\theta \mid X)$. This decomposition reveals how the TV distance can be related to discriminability around X_{0} and an average discrepancy between the true and approximated posterior densities relative to their value at X_{0} where the average is taken over the marginal $\widetilde{\pi}(X)$. These averages will be smaller the marginal $\widetilde{\pi}(X)$ produces

Question - can we obtain something similar by comparing the error bound between B-GAN and B-GAN-VB?

(scale)	$\theta_{1}=0.01$		$\theta_{2}=0.5$		$\theta_{3}=1.0$		$\theta_{4}=0.01$	
	$\begin{gathered} \text { bias } \\ \left(\times 10^{-3}\right) \end{gathered}$	$\begin{aligned} & \text { CI width } \\ & \left(\times 10^{-2}\right) \end{aligned}$	$\begin{gathered} \text { bias } \\ \left(\times 10^{-1}\right) \end{gathered}$	CI width	bias	CI width	$\begin{gathered} \text { bias } \\ \left(\times 10^{-2}\right) \end{gathered}$	$\begin{aligned} & \text { CI width } \\ & \left(\times 10^{-2}\right) \end{aligned}$
B-GAN	4.15	1.89	1.09	0.45	0.24	1.00	0.49	2.18
B-GAN-2S	0.70	0.21 (0.9)	0.42	0.10 (0.7)	0.11	0.33 (0.9)	0.13	0.34 (0.8)
B-GAN-VB	1.02	0.25 (0.7)	0.38	0.11 (0.9)	0.11	0.29 (0.8)	0.12	0.29 (0.7)
SNL	1.05	0.44	0.45	0.17	0.13	0.48	0.15	0.52
SS	9.58	3.80	2.49	0.91	0.49	1.76	0.68	2.72
W2	10.99	4.02 (0.9)	2.42	0.84	0.47	1.73	0.79	2.82

Table 1: Summary statistics of the approximated posteriors under the Lotka-Volterra model (averaged over 10 repetitions). Bold fonts mark the best model of each column. The coverage of the 95% credible intervals are 1 unless otherwise noted in the parentheses.

(scale)	$r=0.4$		$\kappa=50$		$\alpha=0.09$		$\beta=0.05$	
	$\begin{gathered} \text { bias } \\ \left(\times 10^{-1}\right) \end{gathered}$	$\begin{aligned} & \text { CI width } \\ & \left(\times 10^{-1}\right) \end{aligned}$	bias	CI width	$\begin{aligned} & \text { bias } \\ & \left(\times 10^{-2}\right) \end{aligned}$	$\begin{aligned} & \text { CI width } \\ & \left(\times 10^{-1}\right) \end{aligned}$	$\begin{gathered} \text { bias } \\ \left(\times 10^{-1}\right) \end{gathered}$	CI width
B-GAN	0.44	1.63	2.92	10.78	3.03	1.38	1.22	0.36 (0.8)
B-GAN-2S	0.27	0.79 (0.8)	1.60	5.29 (0.9)	1.06	0.34	1.05	0.26 (0.7)
B-GAN-VB	0.23	0.65 (0.8)	1.29	4.88 (0.9)	0.89	0.25 (0.7)	1.00	0.19 (0.5)
SNL	0.24	0.93	1.52	5.37	1.01	0.38	1.28	0.39 (0.9)
SS	2.16	8.26	10.60	37.17	15.08	9.18	4.41	0.95
W2	2.59	9.49	10.16	43.20	5.46	2.77	3.92	0.86 (0.6)

Table 2: Summary statistics of the approximated posteriors under the Boom-and-Bust model (averaged over 10 repetitions). Bold fonts mark the best model of each column. The coverage of the 95% credible intervals are 1 unless otherwise noted in the parentheses.

	SS	W2	SNL	B-GAN	B-GAN-2S	B-GAN-VB
Gauss	33.75	221.28	4790.56	2736.93	676.25	726.22
Lotka-Volterra	5846.95	162644.96	3080.96	1610.05	762.21	753.61

Table 6: Computation time of one repetition for each method on Gauss example and Lotka-Volterra (LV) example (in seconds). The time of B-GAN-2S and B-GAN-VB is for computation using the adjusted prior.

Compared to B-GAN, the improvement is significant for both B-GAN 2step and B-GAN-VB, in terms of every aspect.

A few questions

- Compare these two refinements, Which one to use in what scenarios? Is it correct to say B-GAN-VB tends to underestimate uncertainty/ Cl , but is more accurate for complex models? Some discussions on the scalability would also be helpful.
- Extension to model comparison/model evidence? Streaming data modeling?

Other questions

- Jensen-Shannon divergence and Wasserstein distance. The authors give a nice example of convergence/computational issue for JS divergence. But I wonder what price is paid for using Wasserstein distance, besides computational cost?
- Remark 2 assumes ϵ_{n} could be $n^{-1 / 2}$, then the prior concentration condition

$$
\Pi\left(B_{n}\left(\theta_{0} ; \epsilon_{n}\right)\right) \geq e^{-C_{2} n \epsilon_{n}^{2}}
$$

needs to be adjusted accordingly.

